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We study theoretically the viscoelastic properties of sheared binary fluids that have strong dynamical asym-
metry between the two components. The dynamical asymmetry arises due to asymmetry between the viscoelas-
tic stresses, particularly the bulk stress. Our calculations are based on the two-fluid model that incorporates the
asymmetric stress distribution. We simulate the phase separation process under an externally imposed shear
and compare the asymmetric case with the usual phase separation under shear flow without viscoelastic effects.
We also simulate the behavior of phase-separated stable morphologies under applied shear and compute the
stress relaxation.
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I. INTRODUCTION

Many fluids can exhibit viscoelastic behavior; i.e., their
response to deformation is intermediate between that of sol-
ids and fluids. For short times, the response is elastic and the
stress is proportional to the applied strain. On the other hand,
in the long-time limit, a fluidlike response with stress pro-
portional to the strain rate is observed. The effect of vis-
coelasticity on the morphologies of phase separating polymer
solutions and blends has been recently studied experimen-
tally by Tanaka[1,2]. It is now well established that due to
an asymmetry between the viscoelastic properties of the two
phases, a transient network of the more viscoelastic phase is
observed. While there is some understanding of the influence
of viscoelastic effects on phase separation, little is known
about how viscoelasticity affects phase separation when an
external shear flow is applied. Although the effects of shear
on Newtonian (purely hydrodynamic) binary fluids have
been well studied[3,4] and dynamical steady states with
stringy morphologies have been observed, it is also impor-
tant to study similar situations for binary fluids where vis-
coelastic effects can dominate.

Theoretically, the coupling between the stress and concen-
tration fluctuations was investigated by Helfand and Fre-
drickson [5] in the context of shear flow in polymer solu-
tions. Doi and Onuki[6] studied this coupling by introducing
a two-fluid model that considers two different velocities for
the two components. Taniguchi and Onuki[7] have used the
two-fluid model to study viscoelastic phase separation. How-
ever, a two-fluid model incorporating dynamical asymmetry
due to the asymmetric distribution of bulk stresses[8–11]
has successfully explained many features of the viscoelastic
phase separation experiments of Tanaka[1,2], such as tran-
sient network formation and eventual phase inversion. Re-
cently, this theory has also been applied to study the vis-
coelastic phase separation in diblock copolymers[12]. The
two-fluid model was also used to simulate polymeric foams
under shear[13]. In this paper, we use this model to study
phase separation under shear flow for a binary fluid that is
characterized by a strong asymmetry between the viscoelas-
tic moduli of the two phases, particularly the bulk modulus.

In addition to phase separation under shear flow, a study
of the behavior of the stable phase-separated states under

deformation is also important. Recently, Buxton and Balazs
[14] have studied the mechanical properties of phase-
separated morphologies using a block and spring model. This
model considers elastic properties but cannot describe the
viscoelastic response. Thus we study the behavior of fully
phase-separated stable states under a constant shear based on
the two-fluid model. The time evolution of mechanical
stresses generated for such phase-separated states is also
studied.

The paper is organized as follows. In Sec. II, we discuss
the two-fluid model used in our simulations. Section III de-
scribes results of viscoelastic phase separation under shear
flow while Sec. IV is devoted to the response of stable phase-
separated morphologies subjected to steady shear. We con-
clude the paper with a summary and discussion in Sec. V.

II. TWO-FLUID MODEL

The coupling between viscoelastic stresses and diffusion
is studied using the two-fluid model. We consider a dynami-
cally asymmetric mixture of a viscoelastic fluidsAd and a
purely hydrodynamic(nonviscoelastic) fluid sBd. In this
model, different velocity fields—vWAsrW ,td for the viscoelastic
phase andvWBsrW ,td for the nonviscoelastic fluid—are intro-
duced. The average velocity is given byvWaveragesrW ,td
=fsrW ,tdvWAsrW ,td+f1−fsrW ,tdgvWBsrW ,td, wherefsrW ,td is the con-
centration of the viscoelastic fluid. The free energy of mixing
can be written in terms of the concentrationfsrW ,td as

Fmix =E drW ff2s1 − fd2 + sC/2ds¹W fd2g, s1d

whereC is the concentration gradient coefficient that is as-
sumed to be constant in the present work. The free energy
Fmix is a simplified version of the Flory-Huggins[15] free
energy. The applied shear flow is implemented by consider-
ing an average velocityvWaverage=vWapplied+vW, wherevW is the
contribution to the average velocity due to concentration
fluctuations andvWapplied is the contribution due to the external
shear flow given as

PHYSICAL REVIEW E 70, 011506(2004)

1539-3755/2004/70(1)/011506(10)/$22.50 ©2004 The American Physical Society70 011506-1



vWapplied= sux − x0u ĵ . s2d

This represents an external shear(symmetric aboutx0) ap-
plied along they direction ands is the shear rate. The appro-
priate equation of motion for incompressible viscoelastic bi-
nary fluids under external shear flow is

]f

]t
+ vW ·¹W f + sux − x0u

]f

]y
= ¹W ·

fs1 − fd2

z
f¹W · PJ − ¹W · sJg.

s3d

HeresJ represents the viscoelastic stress tensor. The osmotic

tensor PJ is defined as¹W ·PJ =f¹W h2fs1−fd2−2s1−fdf2

−C¹2fj. The quantityz is the friction coefficient associated
with the velocity vWA−vWB andhs is the shear viscosity. The
dynamics of the average velocity fieldvW is given by the usual
Navier-Stokes equation

r
]vW

]t
= − ¹W · PJ + ¹W P + ¹W · sJ + hs¹

2vW , s4d

where a pressure has been introduced to account for the in-
compressibility constraint. If we use the overdamped limit

]vW /]t=0, then under the incompressibility condition¹W ·vW

=0, the velocity can be expressed in Fourier space as

vWk = TJk · s− ¹W · PJ + ¹W · sJdk, s5d

wheres¯dk represents the Fourier transform andTk is a ten-
sor defined in Fourier space as

TJk =
1

hsk
2FIJ−

kWkW

k2G , s6d

where IJ represents the unit tensor. To specify a constitutive
law for the viscoelastic stresses, we use the Maxwell model
according to which the equation of motion for the stresses is
given by

]sJb

]t
+

sJb

tbsfd
= mbsfdMJ ,

]sJs

]t
+

sJs

tssfd
= mssfdMJ , s7d

wheretb and ts are the internal molecular relaxation times
associated with the bulk and shear stresses, respectively. The

matrix MJ is given by

FIG. 1. (Color online) Phase separation process without shear flow for the purely hydrodynamic case, the viscoelastic case with bulk
modulus, and the viscoelastic case without bulk modulus.
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MJ = 3 2
]vAx

]x
S ]vAx

]y
+

]vAy

]x
D

S ]vAx

]y
+

]vAy

]x
D 2

]vAy

]y
4 . s8d

The velocity vWA represents the velocity of the viscoelastic
phase defined as

vWA = vW + vWapplied−
s1 − fd2

z
f¹W · PJ − ¹W · sJg. s9d

The above definition ofMJ assumes that the stress acts on the
viscoelastic fluid only. The final stressessJb

f andsJs
f are given

by sJb
f =s1/2dTrssJbdIJ and sJs

f =sJs−s1/2dTrssJsdIJ. The total
stress is given bysJ=sJb

f +sJs
f. The model described in Eqs.

(1)–(9) can be used to simulate the viscoelastic phase sepa-
ration under shear flow with shear rates.

III. VISCOELASTIC PHASE SEPARATION UNDER
SHEAR FLOW

We describe our results on simulations of viscoelastic
phase separation, both with and without shear. The model
described in Sec. II is discretized on a 1283128 grid with
periodic boundary conditions, using a spectral approach for
the velocity equation and explicit, central difference schemes
sD=1, Dt=0.005d for the rest.

The applied velocity profile is symmetric about thesx
=x0d line. This allows periodic boundary conditions to be
used during the application of shear. The effects of using
such a profile are negligible in the long-time limit as the
asymptotic morphologies are not influenced by the shear pro-
file. A scheme that transforms coordinates[16,17] so that the
regular shear profile is mapped to one involving periodic
boundary conditions was also used. However, this leads to
numerical instability and heterogeneities at long times for
high shear rates. For the current viscoelastic model this
scheme worked successfully until times of ordert=500 for
shear rates,s=0.01 and 0.1. The scheme was successfully
tested with constant mobility in the order parameter equation
for a purely hydrodynamic model[17] but led to numerical

FIG. 2. (Color online) Top three panels: evolution of the normal, bulk, and shear stresses for the situation depicted in Fig. 1. The stresses
are calculated by averaging the local stresses over the entire system. Bottom three panels: evolution of the interfacial stresses for the situation
depicted in Fig. 1. The curve with triangles represents the full viscoelastic model; the inverted triangle(green) represents the viscoelastic
model without bulk modulus. The solid line in the bottom three curves represents the nonviscoelastic purely hydrodynamic case.

VISCOELASTIC PROPERTIES OF DYNAMICALLY… PHYSICAL REVIEW E 70, 011506(2004)

011506-3



instabilities for the order-parameter-dependent mobility case
discussed in the present work. Thus, for the sake of compu-
tational simplicity, we use the shear profile in Eq.(2).

Following Tanaka and Araki[8,9], we choose a step func-
tion mb=mb

0usf−f0d (f0 is the initial concentration before
quenching), ms=ms

0f2, tb=tb
0f2, and ts=ts

0f2. With this
choice of moduli and time scales, Tanaka and Araki were
able to reproduce a number of experimental features of vis-
coelastic phase separation[8,9].

We first simulate phase separation without an external
shearss=0d. We consider a 50-50 mix with initial concentra-
tion fixed atf0=0.5. The fieldfsrW ,0d is initialized by small
fluctuations of order 0.001 aroundf0 and the model in Sec.
II is simulated for three different cases. Case I corresponds to
hydrodynamic phase separation in the absence of viscoelastic
effects. Here we set all the stresses to zero and solve Eqs.(3)
and (5) with only one velocity fieldvW. Case II is the full
asymmetric viscoelastic model withhs=1, z=0.1, mb

0=5,
ms

0=0.5,tb
0=10, andts

0=50. To clarify the role of the bulk
stress, in case III we switch off the bulk modulus—i.e.,
mb

0=0.

Figure 1 shows the phase separation process for the three
cases. The left column shows the nonviscoelastic(hydrody-
namic) case, the middle column depicts the full viscoelastic
model with asymmetric bulk modulus, and the right column
represents the phase separation for the viscoelastic case with-
out bulk modulus. This figure shows the importance of the
bulk modulus in the formation of a network of the more
viscoelastic component. For the case with the bulk modulus,
initially, holes of the nonviscoelastic phase are formed in a
partially phase-separated matrix of the more viscoelastic
phase. As these holes grow, the area of the viscoelastic re-
gion decreases and a networklike structure is formed. These
results are consistent with earlier results of Tanaka and Araki
[8]. For the full viscoelastic model, we do not observe the
breaking of the network within the time interval we simu-
lated. The case without the bulk modulus appears to be simi-
lar to the purely hydrodynamic case and there is no network
formation. Figure 1 also shows that viscoelastic effects slow
down the domain growth, as can be inferred by comparing
the domain patterns at timet=1000 for all three cases.

We have also monitored the evolution of the relevant
stresses during the phase separation. The top three panels in

FIG. 3. (Color online) Phase separation process with shear flow of shear rates=0.01 for the purely hydrodynamic case, the viscoelastic
case with bulk modulus, and the viscoelastic case without bulk modulus. Shear is applied along they direction and periodic boundary
conditions are assumed.
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Fig. 2 show the behavior of the average normal stresssxx
−syy, the average bulk stresssxx+syy, and the average shear
stresssxy for the case with bulk stress as well as that for the
case without bulk stress. The normal and shear stresses do
not decay completely in the time simulated and exhibit small
fluctuations of order 0.001, possibly due to the motion of the
viscoelastic phase. The role of the bulk stress is similar to
that for the case with nonzero bulk modulus; the early stage
of phase separation is associated with significant compres-
sive stresses. The compressive stresses are associated with
the formation of the network of the more viscoelastic phase.
The network of the partially phase-separated viscoelastic
phase shrinks as the phase separation proceeds, resulting in
the compressive stresses observed in the early stages. The
interfaces also contribute to the stresses, and following Refs.
[18,19], we define the normal interfacial stress as
ks]f /]xd2−s]f /]yd2l, the bulk interfacial stress as
ks]f /]xd2+s]f /]yd2l, and the shear interfacial stress as
ks]f /]xds]f /]ydl. The bottom three panels in Fig. 2 show
the evolution of the interfacial stresses for the situation de-
picted in Fig. 1. We also show the interfacial stresses for the
nonviscoelastic case(solid lines in the bottom three panels).
The fluctuations in these stresses are governed by the inter-
facial motion. Notice that the bulk interfacial stresses are
higher compared to the normal and shear interfacial stresses.

This is because the normal and shear interfacial stresses can
locally take positive as well as negative values and, conse-
quently, the average is small.

In Fig. 3, we display the phase separation process when
an external shear with shear rates=0.01 is applied. As in the
case without shear, we consider three cases corresponding to
the hydrodynamic case without viscoelastic effects, the full
viscoelastic model with bulk modulus, and the viscoelastic
model without bulk modulus. At this shear rate, the very
early stages are not influenced significantly by the applied
shear for all cases. At later times, there is an underlying
tendency for the domains to align along the shear direction,
although the alignment is not complete within the time simu-
lated st=2500d. The case with the bulk modulus exhibits
network morphologies in the earlier stages even for this case.
The alignment is also slower in the initial stages for the case
with the bulk modulus.

The time evolution of viscoelastic stresses for this value
of shear is shown in Fig. 4(top three panels) for the case
with bulk stress as well as the case without bulk stress. Fluc-
tuations due to random motion of domains in the early stages
are observed for both normal and shear stresses and the am-
plitude of the fluctuations decreases at late times as the do-
mains tend to align with the flow direction. For this case
also, the bulk stress for the case with bulk modulus becomes

FIG. 4. (Color online) Top three panels: evolution of the normal, bulk, and shear stresses for the situation depicted in Fig. 3. Bottom three
panels: evolution of the interfacial stresses for the situation depicted in Fig. 3. Meaning of symbols is same as Fig. 2.
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negative in the early stages, indicating the shrinking of the
network of the viscoelastic phase. This alignment also influ-
ences the interfacial stresses, as can be seen in the bottom
three panels in Fig. 4. The bulk and normal stresses for all
cases approach a fixed value as at long times]f /]y→0
because of the alignment. Due to the decaying concentration
gradient along they direction, the corresponding shear inter-
facial stresses are also small compared to the bulk and nor-
mal interfacial stresses.

Finally, we consider phase separation under a relatively
large shear rates=0.1. Figure 5 shows the phase separation
at this shear rate for all three cases. For this case, the external
shear effects dominate the phase separation and the tendency
of the domains to align with the shear to form stringy pat-
terns is much stronger than the earlier case. The purely hy-
drodynamic model rapidly forms the stringy phase, whereas
for the viscoelastic cases, the intermediate stages are charac-
terized by complex motion of the domains. For the case with
the bulk modulus, the early stages do not show the formation
of a well-developed network as the shear dominates over the

internal dynamics. The snapshots att=2500 show that a
stringy phase seems to form at long times for the viscoelastic
cases also, although the width of the lamellae is larger com-
pared to the hydrodynamic case.

The top three panels of Fig. 6 show the time evolution of
the viscoelastic stresses for this case. After transient fluctua-
tions, the normal stresses decay to zero as the steady state is
established. Compressive bulk stresses are observed even for
this case but the magnitude is smaller for this case, compared
to the earlier cases. This is due to the fact that the shear flow
is so fast that the transient network of the viscoelastic phase
is not able to fully develop. This is clear from the snapshot at
time t=50 for the viscoelastic case. The behavior of the shear
stresses is interesting. At long times, the shear stresses satu-
rate to nonzero values. The saturation stresses are related to
the effective shear viscosities for this binary fluid. The bot-
tom three panels show the interfacial stresses. Since there is
an almost perfect stringy phase formation in the long-time
limit, the interfacial stresses attain their steady values. Notice
that the bulk and normal stresses are almost the same due to

FIG. 5. (Color online) Phase separation process with shear flow of shear rates=0.1 for the purely hydrodynamic case, the viscoelastic
case with bulk modulus, and the viscoelastic case without bulk modulus. Shear is applied along they direction and periodic boundary
conditions are assumed.
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the vanishing concentration gradient in they direction. For
the same reason, shear interfacial stresses also decay in the
long-time limit.

IV. PHASE-SEPARATED STABLE STATES UNDER SHEAR

So far we have considered the effects of shear on binary
fluids undergoing phase separation. In this section we apply
shear on stable phase-separated morphologies. The aim of
this section is to explore the possibilities of using this model
to study mechanical properties of polymer solutions and
blends. Recently, Buxton and Balazs[14] have used a block
and spring model to simulate the deformation of a random
two-phase morphology obtained from a Cahn-Hilliard simu-
lation. In this approach, there is no coupling between the
morphologies and the deformation. Such an approach can
only be used to study linear elastic behavior and does not
describe the full viscoelastic response. The morphologies
cannot evolve in response to deformation. However, the two-
fluid framework used in this paper explicitly incorporates a
coupling between the stress and the concentration and there-
fore it can describe deformation-induced morphological evo-
lution.

We consider a simple phase-separated morphology below
the coexistence temperature. We consider a 50-50sf0=0.5d

binary fluid that exists as a band of fluidA sandwiched be-
tween layers of fluidB. This is a stable phase-separated con-
figuration. Polymer blends can show such macro phase sepa-
ration in equilibrium and block copolymers also micro phase
separate into lamellar morphologies[20]. We apply shear in
the same way as discussed in the previous section. We con-
sider two different shearing conditions. In one case the shear
is normal to theA/B interface, and in the other case the shear
is parallel to the interface. Such a situation(for block copoly-
mers) has been investigated experimentally[21] and theoreti-
cally using hydrodynamic models[22]. The morphological
evolution for the case of shear normal to theA/B interface is
depicted in Fig. 7. All three cases that have been discussed in
the previous section are simulated for this case also. For all
the cases, initially the interface starts to move in response to
the shear and at long times there is a tendency to form many
bands aligned along the shearing direction. The bands appear
to be wider for the viscoelastic cases in comparison to the
hydrodynamic case. However, we do not find much differ-
ence between the case with bulk modulus and the case with-
out bulk modulus. Interestingly, for the case when the shear
is applied parallel to the interface, the band remains stable
and no morphological evolution is observed for all three
cases. This is consistent with the shear-induced reorientation

FIG. 6. (Color online) Top three panels: evolution of the normal, bulk, and shear stresses for the situation depicted in Fig. 5. Bottom three
panels: evolution of the interfacial stresses for the situation depicted in Fig. 5. Meaning of the symbols is same as Fig. 2.
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of lamella for block copolymers observed in experiments
[21] and theoretical models[22].

The three panels of Fig. 8 show the evolution of vis-
coelastic stresses for the full viscoelastic model(with bulk
modulus) for both cases(shear parallel and perpendicular to
the interface). For shear parallel to the interface, the normal
and bulk stresses remain zero during the shearing process.
This is because there are no morphological changes and only
shear stresses are generated. For the case of shear perpen-
dicular to the interface, normal as well as bulk stresses are
generated due to shear-induced motion of the interface de-
picted in Fig. 7. For a short interval, weak compressive
stresses are observed. The early-time behavior of the shear
stress also differs from the case when the shear is applied
parallel to the interface. This figure demonstrates the role
played by morphological evolution on the viscoelastic prop-
erties of binary fluids. For the case without bulk modulus,
very similar stress evolution(not shown here) is observed.
However, no bulk stress is generated. The appropriate inter-
facial stresses are determined by the concentration gradients
across the flat interfaces and are not shown as they do not
exhibit particularly interesting behavior.

Finally, we study the relaxation of the morphologies after
the applied shear is suddenly removed. We remove the shear
at t=50 corresponding to the morphologies shown in the

bottom row of Fig. 7. Figure 9 shows the final morphologies
at t=2150 after removing the shear. It is clear that the mor-
phological relaxation is much faster for the nonviscoelastic
case and the band reappears, although it is shifted from the
original position. For the viscoelastic cases, the morphologi-
cal relaxation is very slow and the pattern does not return to
the original band within the time span of the present simula-
tions.

V. SUMMARY

We have investigated the viscoelastic properties of dy-
namically asymmetric binary fluids under shear flow. The
dynamical asymmetry arises as the binary fluid is constituted
of one viscoelastic fluid and the other nonviscoelastic, purely
hydrodynamic fluid. We have simulated phase separation for
this binary fluid both with and without shear. Only for the
case with a nonzero bulk modulus is there a tendency to form
a network of the more viscoelastic phase in the initial stages
of phase separation, both with and without shear flow. How-
ever, for the high shear rate, the network phase is short lived
as the shear has a tendency to suppress network formation.
For the high shear rate, in the long-time limit, a stringy phase
is observed even for the viscoelastic cases; however, the
length scales associated with the stringy phase are larger

FIG. 7. (Color online) Evolution of the band morphology under a shear flow of shear rates=0.1 for the purely hydrodynamic case, the
viscoelastic case with bulk modulus, and the viscoelastic case without bulk modulus. Shear is applied along they direction and periodic
boundary conditions are assumed.
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compared to the purely hydrodynamic case. Thus, viscoelas-
tic effects enhance the extent of phase separation under
shear. We have also studied the temporal evolution of the
effective viscoelastic stresses during the phase separation
process. Interfacial motion results in fluctuations of the shear
and normal stresses in the early stages. Transient compres-
sive stresses are also observed corresponding to shrinking of
viscoelastic phase in the early stages. At long times, the
shear stresses saturate to a nonzero value. This value is re-

lated to the effective viscosity of the two-phase fluid.
We also investigated the effects of shear on stable phase-

separated morphologies. A lamellar structure of the binary
fluid below the coexistence temperature is sheared, both nor-
mal and parallel to the interface. There are crucial differ-
ences between these two cases. For shear parallel to the in-
terface, no morphological evolution is observed, while
for the case of shear normal to the interface, the interface
moves and splits into bands that tend to align with the shear.

FIG. 8. (Color online) Evolution of the normal, bulk, and shear(mechanical) stresses for the case with nonzero bulk modulus(evolution
depicted in the middle column of Fig. 7) for the two cases of shear parallel to the band and shear normal to the band.

FIG. 9. (Color online) Morphologies for the three cases att=2150 time steps after the shear flow has been removed. The shear flow was
removed att=50 steps after the shear was applied(corresponding to the bottom row in Fig. 7).
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The evolution of effective stresses also depends on the
direction of the interface. For example, for shear parallel to
the interface, no bulk and normal stresses are generated. On
the other hand, for shear normal to the interface, bulk, nor-
mal, and shear stresses are generated due to interfacial
motion.

This paper demonstrates the role played by viscoelasti-
city on shearing of binary fluids. The simulations show
that the underlying viscoelastic properties can significantly
influence the shearing behavior. Further experiments are

needed to test predictions of our simulations. The approach
used in the present work can also be applied to other
complex fluids such as block copolymers and microemul-
sions.
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