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Viscoelastic properties of dynamically asymmetric binary fluids under shear flow
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We study theoretically the viscoelastic properties of sheared binary fluids that have strong dynamical asym-
metry between the two components. The dynamical asymmetry arises due to asymmetry between the viscoelas-
tic stresses, particularly the bulk stress. Our calculations are based on the two-fluid model that incorporates the
asymmetric stress distribution. We simulate the phase separation process under an externally imposed shear
and compare the asymmetric case with the usual phase separation under shear flow without viscoelastic effects.
We also simulate the behavior of phase-separated stable morphologies under applied shear and compute the
stress relaxation.
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[. INTRODUCTION deformation is also important. Recently, Buxton and Balazs

Many fluids can exhibit viscoelastic behavior; i.e., their [14] have studied the mechanical properties of phase-
response to deformation is intermediate between that of soféparated morphologies using a block and spring model. This
ids and fluids. For short times, the response is elastic and tHgodel considers elastic properties but cannot describe the
stress is proportional to the applied strain. On the other hand/iscoelastic response. Thus we study the behavior of fully
in the long-time limit, a fluidlike response with stress pro- phase-separated stable states under a constant shear based on
portional to the strain rate is observed. The effect of vis-the two-fluid model. The time evolution of mechanical
coelasticity on the morphologies of phase separating polymestresses generated for such phase-separated states is also
solutions and blends has been recently studied experimestudied.
tally by Tanaka[1,2]. It is now well established that due to  The paper is organized as follows. In Sec. Il, we discuss
an asymmetry between the viscoelastic properties of the twghe two-fluid model used in our simulations. Section Il de-
phases, a transient network of the more viscoelastic phase égribes results of viscoelastic phase separation under shear
observed. While there is some understanding of the influencgow while Sec. IV is devoted to the response of stable phase-
of viscoelastic effects on phase separation, little is knownseparated morphologies subjected to steady shear. We con-

about how viscoelasticity affects phase separation when afyde the paper with a summary and discussion in Sec. V.
external shear flow is applied. Although the effects of shear

on Newtonian (purely hydrodynamig binary fluids have

been well studied3,4] and dynamical steady states with Il. TWO-FLUID MODEL

stringy morphologies have been observed, it is also impor-

tant to study similar situations for binary fluids where vis-  The coupling between viscoelastic stresses and diffusion

coelastic effects can dominate. is studied using the two-fluid model. We consider a dynami-
Theoretically, the coupling between the stress and concersally asymmetric mixture of a viscoelastic flui) and a

tration fluctuations was investigated by Helfand and Frepurely hydrodynamic(nonviscoelastig fluid (B). In this

drickson[5] in the context of shear flow in polymer solu- model, different velocity fields-sa(,t) for the viscoelastic

tions. Doi and Onukj6] studied this coupling by introducing phase andsg(f,t) for the nonviscoelastic fluid—are intro-

a two-fluid model that con5|der_s two different velocities for y,ced. The average velocity is given bi’average(F,t)

the two components. Taniguchi and On{iK] have used the _ (F, 05 A(F,H) +[L— (7, 1) J(F, 1), whered(F,t) is the con-

two-fluid model o study viscoelastic phase separation. Howgentration of the viscoelastic fluid. The free energy of mixin
ever, a two-fluid model incorporating dynamical asymmetry ) 9y 9

due to the asymmetric distribution of bulk stresggs1]  can be written in terms of the concentratig(r,t) as

has successfully explained many features of the viscoelastic

phase separation experiments of Tangk&], such as tran- - 2r 200 _ )2 o 12

sient network formation and eventual phase inversion. Re- Fm'x_J dr[¢71 - ¢)"+ (CIA(V ¢)7l, @)

cently, this theory has also been applied to study the vis-

coelastic phase separation in diblock copolym@dr®. The  whereC is the concentration gradient coefficient that is as-

two-fluid model was also used to simulate polymeric foamssumed to be constant in the present work. The free energy

under sheaf13]. In this paper, we use this model to study F,x is a simplified version of the Flory-Huggif45] free

phase separation under shear flow for a binary fluid that ienergy. The applied shear flow is implemented by consider-

characterized by a strong asymmetry between the viscoelagig an average VeloCity aerage=Uappiiedt v, Wherev is the

tic moduli of the two phases, particularly the bulk modulus.contribution to the average velocity due to concentration
In addition to phase separation under shear flow, a studffuctuations and,pjieqis the contribution due to the external

of the behavior of the stable phase-separated states undgtear flow given as
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FIG. 1. (Color online Phase separation process without shear flow for the purely hydrodynamic case, the viscoelastic case with bulk
modulus, and the viscoelastic case without bulk modulus.

D applied= ox - Xoﬁ- ) =0, the velocity can be expressed in Fourier space as
This represents an external sh¢gymmetric about,) ap- 0 =T (=V-I1+V - &), (5
plied along they direction ands is the shear rate. The appro-
priate equation of motion for incompressible viscoelastic bi
nary fluids under external shear flow is

‘where(---), represents the Fourier transform ands a ten-
sor defined in Fourier space as

b . - ap - d1-¢)? - < - o 1 |- Kk
f+v-V¢+S|X—Xo|£=V-%[V-H—V-&], Tk:ﬁ[l_ﬁly (6)

S Whererrepresents the unit tensor. To specify a constitutive

Here & represents the viscoelastic stress tensor. The osmotl@W fO(;_ the vischqerllasr':ic stresses, \;ve use t?e Mhaxwell model
tensor T is defined asV-1=$¥(28(1—d)2-2(1-g) g2 2ccording to which the equation of motion for the stresses is

—-CV?¢}. The quantity/ is the friction coefficient associated given by
with the velocityv,—vg and 7, is the shear viscosity. The 05y Gy -
dynamics of the average velocity fiefds given by the usual Y + (&) =my(HM,
Navier-Stokes equation b
W % [(+TP+Y -5+ n¥% (4) 9 + 55 my($)M (7)
—_—= = . T v s e —_— ,
Pa s A e

where a pressure has been introduced to account for the imthere 7, and 75 are the internal molecular relaxation times
compressibility constraint. If we use the overdamped limitassociated with the bulk and shear stresses, respectively. The

av/dt=0, then under the incompressibility conditidh-o ~ matrix M is given by
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FIG. 2. (Color onling Top three panels: evolution of the normal, bulk, and shear stresses for the situation depicted in Fig. 1. The stresses
are calculated by averaging the local stresses over the entire system. Bottom three panels: evolution of the interfacial stresses for the situation
depicted in Fig. 1. The curve with triangles represents the full viscoelastic model; the inverted t(gregie represents the viscoelastic
model without bulk modulus. The solid line in the bottom three curves represents the nonviscoelastic purely hydrodynamic case.

A ax Wpay VA I1l. VISCOELASTIC PHASE SEPARATION UNDER
2= oy + KY SHEAR FLOW
M= o o o . (8) We describe our results on simulations of viscoelastic
(i‘+ —AY) 2 =AY phase separation, both with and without shear. The model
dy X ay described in Sec. Il is discretized on a 22828 grid with

periodic boundary conditions, using a spectral approach for
the velocity equation and explicit, central difference schemes
The velocity v, represents the velocity of the viscoelastic (A=1, At=0.005 for the rest.
phase defined as The applied velocity profile is symmetric about tke
=Xg) line. This allows periodic boundary conditions to be
used during the application of shear. The effects of using
I 1-¢)? - - - such a profile are negligible in the long-time limit as the
UA=U * Uapplied ™ ¢ [V-I-V.5]. © asymptotic morphologies are not influenced by the shear pro-
file. A scheme that transforms coordinafé$,17 so that the
regular shear profile is mapped to one involving periodic

The ab definit i hat th h boundary conditions was also used. However, this leads to
e above definition oM assumes that the stress acts on the, merical instability and heterogeneities at long times for

viscoelastic fluid only. The final stressah a”dffs are given  pigh shear rates. For the current viscoelastic model this
by &h=(1/2Tr(&,)l and &i=Gs-(1/2)Tr(F)l. The total  scheme worked successfully until times of orde500 for
stress is given byr=a}+%. The model described in Egs. shear ratess=0.01 and 0.1. The scheme was successfully
(1)<9) can be used to simulate the viscoelastic phase sepgested with constant mobility in the order parameter equation
ration under shear flow with shear rate for a purely hydrodynamic mod¢L7] but led to numerical
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FIG. 3. (Color onling Phase separation process with shear flow of sheasrded1 for the purely hydrodynamic case, the viscoelastic
case with bulk modulus, and the viscoelastic case without bulk modulus. Shear is applied algndirbeion and periodic boundary

conditions are assumed.

instabilities for the order-parameter-dependent mobility case Figure 1 shows the phase separation process for the three
discussed in the present work. Thus, for the sake of compuzases. The left column shows the nonviscoelagtycrody-

tational simplicity, we use the shear profile in Ef).
Following Tanaka and AraKi8,9], we choose a step func-

tion my=m,%6(— o) (o is the initial concentration before

quenching, m=mP¢?, 7,=7,°¢?, and 7;=7L¢?. With this

namio case, the middle column depicts the full viscoelastic
model with asymmetric bulk modulus, and the right column
represents the phase separation for the viscoelastic case with-
out bulk modulus. This figure shows the importance of the

choice of moduli and time scales, Tanaka and Araki werd?ulk modulus in the formation of a network of the more

able to reproduce a number of experimental features of vi
coelastic phase separatif$9].

We first simulate phase separation without an externa

shear(s=0). We consider a 50-50 mix with initial concentra-
tion fixed at¢y=0.5. The fieldg(r,0) is initialized by small
fluctuations of order 0.001 aroungl, and the model in Sec.

Jiscoelastic component. For the case with the bulk modulus,

initially, holes of the nonviscoelastic phase are formed in a
partially phase-separated matrix of the more viscoelastic
phase. As these holes grow, the area of the viscoelastic re-
gion decreases and a networklike structure is formed. These
results are consistent with earlier results of Tanaka and Araki
[8]. For the full viscoelastic model, we do not observe the

Ilis simulated for three different cases. Case | corresponds tgreaking of the network within the time interval we simu-
hydrodynamic phase separation in the absence of viscoelastigted. The case without the bulk modulus appears to be simi-

effects. Here we set all the stresses to zero and solve(8qgs.
and (5) with only one velocity fieldv. Case Il is the full
asymmetric viscoelastic model with,=1, £=0.1, m,°=5,
mL=0.5,7,°=10, andr.>=50. To clarify the role of the bulk
strtgss, in case lll we switch off the bulk modulus—i.e.,
my =0.

lar to the purely hydrodynamic case and there is no network
formation. Figure 1 also shows that viscoelastic effects slow
down the domain growth, as can be inferred by comparing
the domain patterns at tinte=1000 for all three cases.

We have also monitored the evolution of the relevant
stresses during the phase separation. The top three panels in
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FIG. 4. (Color onling Top three panels: evolution of the normal, bulk, and shear stresses for the situation depicted in Fig. 3. Bottom three
panels: evolution of the interfacial stresses for the situation depicted in Fig. 3. Meaning of symbols is same as Fig. 2.

Fig. 2 show the behavior of the average normal stiggs This is because the normal and shear interfacial stresses can
- oy, the average bulk stress,+o,,, and the average shear locally take positive as well as negative values and, conse-
stressay, for the case with bulk stress as well as that for thequently, the average is small.

case without bulk stress. The normal and shear stresses doIn Fig. 3, we display the phase separation process when
not decay completely in the time simulated and exhibit smallan external shear with shear rate0.01 is applied. As in the
fluctuations of order 0.001, possibly due to the motion of thecase without shear, we consider three cases corresponding to
viscoelastic phase. The role of the bulk stress is similar tqhe hydrodynamic case without viscoelastic effects, the full
that for the case with nonzero bulk modulus; the early staggiscoelastic model with bulk modulus, and the viscoelastic
of phase separation is associated with significant compresnodel without bulk modulus. At this shear rate, the very
sive stresses. The compressive stresses are associated Véfitly stages are not influenced significantly by the applied
the formation of the network of the more viscoelastic phaseshear for all cases. At later times, there is an underlying
The network of the partially phase-separated viscoelastigendency for the domains to align along the shear direction,
phase shrinks as the phase separation proceeds, resultingailthough the alignment is not complete within the time simu-
the compressive stresses observed in the early stages. TRged (t=2500. The case with the bulk modulus exhibits
interfaces also contribute to the stresses, and following Refetwork morphologies in the earlier stages even for this case.
[18,19, we define the normal interfacial stress asThe alignment is also slower in the initial stages for the case
(9l 9x)?>=(a¢pl dy)?), the bulk interfacial stress as ith the bulk modulus.

(91 9x)*+(3¢p/ y)?), and the shear interfacial stress as The time evolution of viscoelastic stresses for this value
((dp] x)(d¢pl dy)). The bottom three panels in Fig. 2 show of shear is shown in Fig. 4top three pane)sfor the case

the evolution of the interfacial stresses for the situation dewith bulk stress as well as the case without bulk stress. Fluc-
picted in Fig. 1. We also show the interfacial stresses for théuations due to random motion of domains in the early stages
nonviscoelastic casgolid lines in the bottom three pangls are observed for both normal and shear stresses and the am-
The fluctuations in these stresses are governed by the intgplitude of the fluctuations decreases at late times as the do-
facial motion. Notice that the bulk interfacial stresses aremains tend to align with the flow direction. For this case
higher compared to the normal and shear interfacial stressealso, the bulk stress for the case with bulk modulus becomes
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FIG. 5. (Color onling Phase separation process with shear flow of shearsradel for the purely hydrodynamic case, the viscoelastic
case with bulk modulus, and the viscoelastic case without bulk modulus. Shear is applied algndibeion and periodic boundary
conditions are assumed.

negative in the early stages, indicating the shrinking of thénternal dynamics. The snapshots tat2500 show that a
network of the viscoelastic phase. This alignment also influstringy phase seems to form at long times for the viscoelastic
ences the interfacial stresses, as can be seen in the bottarases also, although the width of the lamellae is larger com-
three panels in Fig. 4. The bulk and normal stresses for alpared to the hydrodynamic case.
cases approach a fixed value as at long timésdy —0 The top three panels of Fig. 6 show the time evolution of
because of the alignment. Due to the decaying concentratiaime viscoelastic stresses for this case. After transient fluctua-
gradient along thg direction, the corresponding shear inter- tions, the normal stresses decay to zero as the steady state is
facial stresses are also small compared to the bulk and noestablished. Compressive bulk stresses are observed even for
mal interfacial stresses. this case but the magnitude is smaller for this case, compared
Finally, we consider phase separation under a relativelyo the earlier cases. This is due to the fact that the shear flow
large shear rate=0.1. Figure 5 shows the phase separationis so fast that the transient network of the viscoelastic phase
at this shear rate for all three cases. For this case, the exterrialnot able to fully develop. This is clear from the snapshot at
shear effects dominate the phase separation and the tenderiye t=50 for the viscoelastic case. The behavior of the shear
of the domains to align with the shear to form stringy pat-stresses is interesting. At long times, the shear stresses satu-
terns is much stronger than the earlier case. The purely hyate to nonzero values. The saturation stresses are related to
drodynamic model rapidly forms the stringy phase, whereashe effective shear viscosities for this binary fluid. The bot-
for the viscoelastic cases, the intermediate stages are chardaom three panels show the interfacial stresses. Since there is
terized by complex motion of the domains. For the case wittan almost perfect stringy phase formation in the long-time
the bulk modulus, the early stages do not show the formatiofimit, the interfacial stresses attain their steady values. Notice
of a well-developed network as the shear dominates over thinat the bulk and normal stresses are almost the same due to
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FIG. 6. (Color online Top three panels: evolution of the normal, bulk, and shear stresses for the situation depicted in Fig. 5. Bottom three
panels: evolution of the interfacial stresses for the situation depicted in Fig. 5. Meaning of the symbols is same as Fig. 2.

the vanishing concentration gradient in thelirection. For  binary fluid that exists as a band of flukl sandwiched be-
the same reason, shear interfacial stresses also decay in theeen layers of fluidB. This is a stable phase-separated con-
long-time limit. figuration. Polymer blends can show such macro phase sepa-

ration in equilibrium and block copolymers also micro phase
IV. PHASE-SEPARATED STABLE STATES UNDER SHEAR separate into lamellar morphologig&0]. We apply shear in

So far we have considered the effects of shear on binar{he same way as discussed in the previous section. We con-
fluids undergoing phase separation. In this section we app|§ider two different shearing conditions. In one case the shear
shear on stable phase-separated morphologies. The aim isfnormal to theA/B interface, and in the other case the shear
this section is to explore the possibilities of using this modelis parallel to the interface. Such a situatidor block copoly-
to study mechanical properties of polymer solutions andmerg has been investigated experiment@fyt] and theoreti-
blends. Recently, Buxton and Balaist] have used a block cally using hydrodynamic model22]. The morphological
and spring model to simulate the deformation of a randonevolution for the case of shear normal to #éB interface is
two-phase morphology obtained from a Cahn-Hilliard simu-depicted in Fig. 7. All three cases that have been discussed in
lation. In this approach, there is no coupling between thdhe previous section are simulated for this case also. For all
morphologies and the deformation. Such an approach cathe cases, initially the interface starts to move in response to
only be used to study linear elastic behavior and does ndhe shear and at long times there is a tendency to form many
describe the full viscoelastic response. The morphologiebands aligned along the shearing direction. The bands appear
cannot evolve in response to deformation. However, the twoto be wider for the viscoelastic cases in comparison to the
fluid framework used in this paper explicitly incorporates ahydrodynamic case. However, we do not find much differ-
coupling between the stress and the concentration and therence between the case with bulk modulus and the case with-
fore it can describe deformation-induced morphological evoout bulk modulus. Interestingly, for the case when the shear
lution. is applied parallel to the interface, the band remains stable

We consider a simple phase-separated morphology beloand no morphological evolution is observed for all three
the coexistence temperature. We consider a 50¢%3 0.5 cases. This is consistent with the shear-induced reorientation
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FIG. 7. (Color onling Evolution of the band morphology under a shear flow of shearsatl for the purely hydrodynamic case, the
viscoelastic case with bulk modulus, and the viscoelastic case without bulk modulus. Shear is applied ajodgettteon and periodic
boundary conditions are assumed.

of lamella for block copolymers observed in experimentsbottom row of Fig. 7. Figure 9 shows the final morphologies
[21] and theoretical modelR2]. att=2150 after removing the shear. It is clear that the mor-
The three panels of Fig. 8 show the evolution of vis-phological relaxation is much faster for the nonviscoelastic
coelastic stresses for the full viscoelastic mo@eith bulk  case and the band reappears, although it is shifted from the
modulug for both casegshear parallel and perpendicular to original position. For the viscoelastic cases, the morphologi-
the interface For shear parallel to the interface, the normalcal relaxation is very slow and the pattern does not return to
and bulk stresses remain zero during the shearing procesbe original band within the time span of the present simula-
This is because there are no morphological changes and ontipns.
shear stresses are generated. For the case of shear perpen-
dicular to the interface, normal as well as bulk stresses are
generated due to shear-induced motion of the interface de-
picted in Fig. 7. For a short interval, weak compressive We have investigated the viscoelastic properties of dy-
stresses are observed. The early-time behavior of the sheaamically asymmetric binary fluids under shear flow. The
stress also differs from the case when the shear is appliedynamical asymmetry arises as the binary fluid is constituted
parallel to the interface. This figure demonstrates the rolef one viscoelastic fluid and the other nonviscoelastic, purely
played by morphological evolution on the viscoelastic prop-hydrodynamic fluid. We have simulated phase separation for
erties of binary fluids. For the case without bulk modulus,this binary fluid both with and without shear. Only for the
very similar stress evolutiofnot shown hergis observed. case with a nonzero bulk modulus is there a tendency to form
However, no bulk stress is generated. The appropriate intes network of the more viscoelastic phase in the initial stages
facial stresses are determined by the concentration gradient$ phase separation, both with and without shear flow. How-
across the flat interfaces and are not shown as they do newer, for the high shear rate, the network phase is short lived
exhibit particularly interesting behavior. as the shear has a tendency to suppress network formation.
Finally, we study the relaxation of the morphologies afterFor the high shear rate, in the long-time limit, a stringy phase
the applied shear is suddenly removed. We remove the shei observed even for the viscoelastic cases; however, the
at t=50 corresponding to the morphologies shown in thelength scales associated with the stringy phase are larger

V. SUMMARY
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FIG. 8. (Color onling Evolution of the normal, bulk, and she@nechanicgl stresses for the case with nonzero bulk modgwlution
depicted in the middle column of Fig) Tor the two cases of shear parallel to the band and shear normal to the band.

compared to the purely hydrodynamic case. Thus, viscoelasated to the effective viscosity of the two-phase fluid.

tic effects enhance the extent of phase separation under We also investigated the effects of shear on stable phase-
shear. We have also studied the temporal evolution of theeparated morphologies. A lamellar structure of the binary
effective viscoelastic stresses during the phase separatidiuid below the coexistence temperature is sheared, both nor-
process. Interfacial motion results in fluctuations of the sheamal and parallel to the interface. There are crucial differ-
and normal stresses in the early stages. Transient compresaces between these two cases. For shear parallel to the in-
sive stresses are also observed corresponding to shrinking t#rface, no morphological evolution is observed, while
viscoelastic phase in the early stages. At long times, théor the case of shear normal to the interface, the interface
shear stresses saturate to a nonzero value. This value is moves and splits into bands that tend to align with the shear.

Hydrodynamic model Viscoelastic model Viscoelastic model

dulus)

(without bulk m 1

t=2200 t=2200 t=2200

FIG. 9. (Color online Morphologies for the three casestat2150 time steps after the shear flow has been removed. The shear flow was
removed at=50 steps after the shear was appliedrresponding to the bottom row in Fig).7
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The evolution of effective stresses also depends on thaeeded to test predictions of our simulations. The approach
direction of the interface. For example, for shear parallel toused in the present work can also be applied to other
the interface, no bulk and normal stresses are generated. @omplex fluids such as block copolymers and microemul-
the other hand, for shear normal to the interface, bulk, norsions.
mal, and shear stresses are generated due to interfacial
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